Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Document Type
Year range
1.
Vestnik Rossijskoj Voenno-Medicinskoj Akademii ; 24(4):659-666, 2022.
Article in Russian | Scopus | ID: covidwho-20235435

ABSTRACT

The study investigated the dynamics of class G immunoglobulins to severe acute respiratory syndrome-2 coronavirus in the blood serum of convalescents who had a new coronavirus infection for 6 months after the polymerase chain reaction conversion. Among the most common symptoms, 30 (73.8%) convalescents had an increase in body temperature to 38°C, 32 (83.3%) had asthenia, 21 (59.5%) had cough, 29 (73.8%) had perversion or loss of sense of smell, pain, and throat discomfort. The duration of symptoms varied from 3–4 days to 3–4 weeks. Within a month after the end of the acute disease period, 8 (20%) patients had a decrease in working capacity, 13 (33%) had difficulty breathing, 9 (22%) had a cough, and 4 (10%) had pain and sore throat. During severe acute respiratory syndrome 2 infection, the virus activates the innate and adaptive immunity, resulting in the formation of specific class G immunoglobulins to the pathogens. After leveling the clinical manifestations, class G immunoglobulins were detected in the majority of convalescents (79%–90%) during the first 6 months, starting from day 14 from disease onset with a predominantly high (> 10 conl. units) positivity coefficient. Moreover, this pattern occurred in both men and women;however, in some studies, the levels of the positivity coefficient of class G immunoglobulins began to decrease by the fifth month of follow-up and sometimes at an earlier time (2 months). Perhaps, this is due to the different functional activities of the immune system of each convalescent, infecting dose of the pathogen, and peculiarities of its interaction with the macroorganism and its immune system. Nevertheless, the class G immunoglobulins identified in the study do not yet indicate the probability of reinfection of convalescents with the same pathogen. The protective titer of antibodies has yet to be investigated further. The article can be used under the CC BY-NC-ND 4.0 license © Authors, 2022.

2.
Vestnik Rossiyskoy voyenno meditsinskoy akademii ; 2:187-198, 2021.
Article in Russian | GIM | ID: covidwho-2081168

ABSTRACT

The presented analysis makes it possible to expand the understanding of the issue concerning the immunopathogenesis of COVID-19, the mechanisms of the onset and development of the disease in a living organism, the formation of an immune response to the new coronavirus, and also to determine the therapeutic tactics of managing patients with severe coronavirus infection. Elucidating the mechanisms of the emergence and development of a new coronavirus infection can help scientists, general practitioners, clinicians, and laboratory physicians respond correctly to the COVID-19 pandemic.

3.
Acta Naturae ; 14(2): 16-38, 2022.
Article in English | MEDLINE | ID: covidwho-1975817

ABSTRACT

1,4-Pyrazine-3-carboxamide-based antiviral compounds have been under intensive study for the last 20 years. One of these compounds, favipiravir (6-fluoro-3-hydroxypyrazine-2-carboxamide, T-705), is approved for use against the influenza infection in a number of countries. Now, favipiravir is being actively used against COVID-19. This review describes the in vivo metabolism of favipiravir, the mechanism of its antiviral activity, clinical findings, toxic properties, and the chemical synthesis routes for its production. We provide data on the synthesis and antiviral activity of structural analogs of favipiravir, including nucleosides and nucleotides based on them.

SELECTION OF CITATIONS
SEARCH DETAIL